Isotopic insights into microbial sulfur cycling in oil reservoirs

نویسندگان

  • Christopher G. Hubbard
  • Yiwei Cheng
  • Anna Engelbrekston
  • Jennifer L. Druhan
  • Li Li
  • Jonathan B. Ajo-Franklin
  • John D. Coates
  • Mark E. Conrad
چکیده

Microbial sulfate reduction in oil reservoirs (biosouring) is often associated with secondary oil production where seawater containing high sulfate concentrations (~28 mM) is injected into a reservoir to maintain pressure and displace oil. The sulfide generated from biosouring can cause corrosion of infrastructure, health exposure risks, and higher production costs. Isotope monitoring is a promising approach for understanding microbial sulfur cycling in reservoirs, enabling early detection of biosouring, and understanding the impact of souring. Microbial sulfate reduction is known to result in large shifts in the sulfur and oxygen isotope compositions of the residual sulfate, which can be distinguished from other processes that may be occurring in oil reservoirs, such as precipitation of sulfate and sulfide minerals. Key to the success of this method is using the appropriate isotopic fractionation factors for the conditions and processes being monitored. For a set of batch incubation experiments using a mixed microbial culture with crude oil as the electron donor, we measured a sulfur fractionation factor for sulfate reduction of -30‰. We have incorporated this result into a simplified 1D reservoir reactive transport model to highlight how isotopes can help discriminate between biotic and abiotic processes affecting sulfate and sulfide concentrations. Modeling results suggest that monitoring sulfate isotopes can provide an early indication of souring for reservoirs with reactive iron minerals that can remove the produced sulfide, especially when sulfate reduction occurs in the mixing zone between formation waters (FW) containing elevated concentrations of volatile fatty acids (VFAs) and injection water (IW) containing elevated sulfate. In addition, we examine the role of reservoir thermal, geochemical, hydrological, operational and microbiological conditions in determining microbial souring dynamics and hence the anticipated isotopic signatures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Impacts of Depositional Environment on δ34S Records: Rethinking Stratigraphic Trends and Biogeochemical Interpretations

Sulfur isotope ratio data (δS) have been used to provide significant insights into global biogeochemical cycling over Earth history, providing a framework for reconstructing both global redox budgets and microbial metabolic activity. However, as the record of ancient oceanic conditions becomes better resolved, reports of coeval but divergent isotopic proxies are becoming increasingly common. Th...

متن کامل

Microbio-ecology and hydro-geochemistry of saline sulfur springs of Ghale-Madreseh, Khuzestan, Iran

Ghale-madreseh is the first point that the saline and sulfurous streams flow into Tembi River, one of the well-known saline rivers in Khuzestan province, Iran. This river is one of the main sources of increasing Karun River’s salinity, which is the largest river in Iran in terms of discharge. There are three saline and sulfurous springs (Shour-1, Shour-2m and Namak Springs) as well as a drinkab...

متن کامل

Microbio-ecology and hydro-geochemistry of saline sulfur springs of Ghale-Madreseh, Khuzestan, Iran

Ghale-madreseh is the first point that the saline and sulfurous streams flow into Tembi River, one of the well-known saline rivers in Khuzestan province, Iran. This river is one of the main sources of increasing Karun River’s salinity, which is the largest river in Iran in terms of discharge. There are three saline and sulfurous springs (Shour-1, Shour-2m and Namak Springs) as well as a drinkab...

متن کامل

Radiotracer Assay of Microbial Processes in Petroleum Reservoirs

Oilfield microbial communities exist under conditions of hampered exchange of water and mass and at a constant temperature; they are independent of the modern atmosphere and sunlight and may be considered closed or semi-closed systems. Crude oil is the main source of organic matter in this ecosystem. Microbial growth in reservoirs can be limited by the low content of phosphate and ammonium nutr...

متن کامل

Evidence for microbial carbon and sulfur cycling in deeply buried ridge flank basalt.

Sediment-covered basalt on the flanks of mid-ocean ridges constitutes most of Earth's oceanic crust, but the composition and metabolic function of its microbial ecosystem are largely unknown. By drilling into 3.5-million-year-old subseafloor basalt, we demonstrated the presence of methane- and sulfur-cycling microbes on the eastern flank of the Juan de Fuca Ridge. Depth horizons with functional...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014